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1 Extension of Functional Calculus and Proof of The Spec-
tral Theorem

1.1 Proof of the spectral theorem for self-adjoint operators

So far, we’ve constructed continuous functional calculus: a map C([a, b])→ Bsa(H) sending
f 7→ f(T ) which is

• linear,

• f(g)(T ) = f(T )g(T ),

• f ≥ g =⇒ f(T ) ≥ g(T ),

• 1(T ) = I,

• ‖f(T )‖ ≤ ‖f‖sup.

If (fn)n is a sequence in C([a, b]) with fn ≥ 0 and fn(x) ↓ g(x) for all x ∈ [a, b], then
we want to define g(T ) by 〈g(T )x, y〉 = limn 〈fn(T )x, y〉. Last time, we showed that this
limit exists (as a weak operator topology limit).

Lemma 1.1. Suppose fn, f
′
n ↓ g. Then the limit, g(T ), is the same.

Proof. Let fn, f
′
n ↓ g. For every x, ε > 0, and n ∈ N, there exists an n′(x, ε) such that

f ′n′(x) < g(x) + ε ≤ fn(x) + ε. Then for each n ∈ N, ε > 0 and x, we get n′(n, x, ε) and a
neighborhood U(n, x, ε) of x such that f ′u′ |Un,x,ε < (fn + ε)|U(n,x,ε). Choose x1, . . . , xt such

that
⋃t
i=1 U(n, xi, ε) = [a, b]. Let n′′ = max(n′(n, x1, ε), . . . , n

′(n, xt, ε)). Now f ′n′′ < fn + ε
on [a, b]. Then f ′n′′(T ) ≤ fn(T ) + εI, so limn′′ f ′n′′(T ) ≤ fn(T ) + ε for all n, ε. Since
ε is arbitrary, and by symmetry, we get that lim f ′n(T ) ≤ limn fn(T ) and lim f ′n(T ) ≥
limn fn(T ). So the limits are equal.

Now, if we have fn ↓ g ≥ 0, we get g(T ) ≥ 0. This is
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• still additive: If fn ↓ g, f ′n ↓ g;, then fn + f ′n ↓ g + g′. We have

(g + g′)(T ) = WO lim
n

(fn(T ) + f ′n(T )) = g(T ) + g′(T ).

Lemma 1.2. If fn ↓ g ≥ 0, and f ′n ↓ g′n ≥ 0, then

(gg′)(T ) = g(T )g′(T ).

Proof. We have fnf
′
n ↓ gg′, so (gg′)(T ) = WO limn(fnf

′
n)(T ). We want to show that the is

the product of the limits of fn(T ) and f ′n(T ). By polarization, it is enough to show that
limn 〈(fnf ′n)Tx, x〉 = limn limm 〈fn(T )f ′m(T )x, x〉. The limit of the diagonal terms is the
same as limn limm because the array is decreasing in n,m (a basic real analysis fact).

Given λ in[a, b] and n ∈ N, define

ϕλn(t) =


1 t ≤ λ
−n(x− (λ+ 1/n)) λ < t ≤ λ+ 1/n

0 t > λ+ 1/n

Then ϕλn ↓ 1(−∞,λ] as n→∞. Define E(λ) := limn ϕ
λ
n(T ).

Here are the properties of E(λ):

1. E(λ) is self adjoint (as a WO limit of self-adjoints).

2. E(λ) = 1(−∞,λ](T ) = 1
2
(−∞,λ](T ) = E(λ)2.

3. If λ ≥ µ, then

E(µ)E(λ) = E(λ)E(µ) = (1(−∞,λ]1(−∞,µ])(T ) = E(µ).

4. Declare E(λ) = 0 if λ < a and E(b) = limn 1(T ) = I.

5. Fix λ ∈ [a, b]. Then E(µ)x → E(λ)x as µ ↓ λ for all x ∈ H. Equivalently,
〈(E(µ)− E(λ))x, x〉 → 0.

To show this, we know 〈E(λ)x, x〉 = limn

〈
ϕλn(T )x, x

〉
. Pick n large enough so that〈

ϕλn(T )x, x
〉
< 〈E(λ)x, x〉+ ε. This is also limµ↓λ 〈ϕµn(T )x, x〉. So for µ close enough

to λ, we get

〈E(µ)x, x〉 ≤ 〈ϕµn(T )x, x〉 < 〈ϕλn(T )x, x〉+ ε < 〈E(λ)x, x〉+ 2ε.

This gives us a spectral family for T . If a ≤ µ ≤ λ ≤ b, then

E(µ, λ] := E(λ)− E(µ) = WO lim
n

[ϕλn(T )− ϕµn(T )].
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This gives us

TE(µ, λ] = WO lim
n
T [ϕλn(T )− ϕµn(T )] = WO lim

n
[(t · (ϕλn(t)− ϕµn(t)))(T )].

Now
µ1(µ+1/n,λ] ≤ t(ϕλn(t)− ϕµn(λ)) ≤ λ1(µ,λ+1/n]

Taking the weak operator limit, we get

µE(µ, λ) ≤ TE(µ, λ) ≤ λE(µ, λ).

Now let a = λ0 < λ1 < · · · < λm = b. Then

I = E(B)

= (E(λn)− E(λn−1)) + · · ·+ (E(λ1)− E(λ0))

= E(a, λ1] + E(λ1, λ2] + · · ·+ E(λn−1, b].

Multiplying by T , we get

T = TE(a, λ1] + TE(λ1, λ2] + · · ·+ TE(λn−1, b].

So we get
m∑
i=1

λi−1E(λi−1, λi] ≤ T ≤
n∑
i=1

λiE(λi−1, λi].

This gives

m∑
i=1

λi−1 〈E(λi−1, λi]x, x〉 ≤ 〈Tx, x〉 ≤
n∑
i=1

λi 〈E(λi−1, λi]x, x〉 .

These are partial sums in the definition of the Riemann-Stieltjes integral. So taking the
limit as maxi |λi − λi−1| → 0, we get

〈Tx, x〉 =

∫
λ d 〈E(λ)x, x〉 .

This completes the proof of the spectral theorem.

1.2 Borel functional calculus and spectral measure

How far can we take this functional calculus? Here is another method which allows us to
extend to all Borel functions. Assume we have a continuous functional calculus: f 7→ f(T )
for all f ∈ C([a, b]). Given x, y ∈ H, consider

f 7→ 〈f(T )x, y〉 .
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This is bounded by | 〈f(T ), x, y〉 | ≤ ‖f‖sup‖x‖‖y‖. So there exists some µx,y ∈ M([a, b])
such that ‖µx,y‖ ≤ ‖x‖‖y‖ and 〈f(T )x, y〉 =

∫
f dµx,y. So given g bounded and Borel,

define

Qg(x, y) :=

∫
g dµx,y.

This is bilinear in x, y and bounded: |Qg(x, y)| ≤ ‖g‖∞‖x‖‖y‖. At each step, our con-
struction is symmetric in x, y, so Qg(x, y) is symmetric in x, y. Now define g(T ) by
〈g(T )x, y〉 = Qg(x, y). We can now define, as before, 1(−∞,λ](T ).

The advantage of this method is that we can also define E(A) := 1A(T ) for all A ∈
B([a, b]). We can now show that

• Every E(A) is a projection.

• E(A ∩B) = E(A)E(B).

• E(∅) = 0, and E([a, b]) = I.

• E(
⋃
nAn) =

∑
nE(An).

This gives a spectral measure, which has the properties of a measure but takes values
in projections. More advanced versions of the spectral theorem use this approach.
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